Math 102

Krishanu Sankar

October 23, 2018

Announcements

Review Sessions for Thursday 10/25 Midterm

- Monday 10/22 in Buchanan A201, 3-7pm
- Tuesday 10/23 in CHBE 101, 3-7pm
- Bring questions if you have them!
- Midterm covers material up to and including Optimization.
- See the 'Midterm' tab on Canvas.

▶ The Chain Rule Applied: Related Rates

Implicit Functions and Differentiation

Related Rates: Sliding Ladder

A ladder of length Lmeters is propped against a wall. The base of the ladder is pulled away from the wall at a constant speed of 0.2 meters per second.

Goal: When the top of the ladder is at height h, calculate $\frac{dh}{dt}$, as a function of h.

$$h = \sqrt{L^2 - x^2} = (L^2 - x^2)^{1/2}$$

Given:
$$L^2 = h^2 + x^2$$
 and $\frac{dx}{dt} = 0.2$.
Want: $\frac{dh}{dt} = ?$

$$h = \sqrt{L^2 - x^2} = (L^2 - x^2)^{1/2}$$

$$\frac{dh}{dt} = \frac{1}{2}(L^2 - x^2)^{-1/2} \cdot (-2x\frac{dx}{dt})$$

$$= -\frac{x}{\sqrt{L^2 - x^2}} \cdot \frac{dx}{dt}$$

• Given:
$$L^2 = h^2 + x^2$$
 and $\frac{dx}{dt} = 0.2$.
• Want: $\frac{dh}{dt} = ?$
 $h = \sqrt{L^2 - x^2} = (L^2 - x^2)^{1/2}$
 $\frac{dh}{dt} = \frac{1}{2}(L^2 - x^2)^{-1/2} \cdot (-2x\frac{dx}{dt})$
 $= -\frac{x}{\sqrt{L^2 - x^2}} \cdot \frac{dx}{dt}$
 $= -\frac{\sqrt{L^2 - h^2}}{h} \cdot (0.2)$
So $\frac{dh}{dt} = -0.2\frac{\sqrt{L^2 - h^2}}{h}$

• Given:
$$L^2 = h^2 + x^2$$
 and $\frac{dx}{dt} = 0.2$.
• Want: $\frac{dh}{dt} = ?$
 $\frac{d}{dt}(L^2) = \frac{d}{dt}(h^2) + \frac{d}{dt}(x^2)$
 $0 = 2h\frac{dh}{dt} + 2x\frac{dx}{dt}$
 $-2x\frac{dx}{dt} = 2h\frac{dh}{dt} \implies \frac{dh}{dt} = (-\frac{x}{h})\frac{dx}{dt}$

► Given:
$$L^2 = h^2 + x^2$$
 and $\frac{dx}{dt} = 0.2$.
► Want: $\frac{dh}{dt} = ?$
 $\frac{d}{dt}(L^2) = \frac{d}{dt}(h^2) + \frac{d}{dt}(x^2)$
 $0 = 2h\frac{dh}{dt} + 2x\frac{dx}{dt}$
 $-2x\frac{dx}{dt} = 2h\frac{dh}{dt} \implies \frac{dh}{dt} = (-\frac{x}{h})\frac{dx}{dt}$
Since $x = \sqrt{L^2 - h^2}$ and $\frac{dx}{dt} = 0.2$, we find

$$\frac{dh}{dt} = -0.2 \frac{\sqrt{L^2 - h^2}}{h}$$

Question: As the ladder is pulled away from the wall, what will happen to the top of the ladder?

- 1. It will slide all the way down the wall, staying in contact with the wall until it hits the ground.
- 2. It will slide down the wall until at some point it comes off the wall and freely falls to the ground.
- 3. It will never fall to the ground.

Sliding Ladder

Question: As the ladder is pulled away from the wall, what will happen to the top of the ladder?

- 1. It will slide all the way down the wall, staying in contact with the wall until it hits the ground.
- 2. It will slide down the wall until at some point it comes off the wall and freely falls to the ground.
- 3. It will never fall to the ground.

Sliding Ladder

Question: As the ladder is pulled away from the wall, what will happen to the top of the ladder?

- 1. It will slide all the way down the wall, staying in contact with the wall until it hits the ground.
- 2. It will slide down the wall until at some point it comes off the wall and freely falls to the ground.
- 3. It will never fall to the ground.

Suppose that option 1 is true. Then as $h \to 0$, $\frac{dh}{dt} \to -\infty$. In other words, the top of the ladder will have an infinite velocity as it hits the ground. This is physically impossible - gravity cannot accelerate an object to an infinite velocity in finite time!

Related Rates: Water Trough

Water flows out of the triangular trough shown at a constant rate of 2 dm^3/s . All numbers shown are measured in dm. Let h denote the height of the water in the trough.

Exercise: Calculate $\frac{dh}{dt}$, as a function of h.

Bonus slide - solution

Let V be the volume of water in the trough. Let x denote the width of the water in the trough. By similar triangles, x = h/2, so

$$V = 14 \cdot \frac{hx}{2} = 14 \cdot \frac{h^2}{4} = \frac{7}{2}h^2$$

Thus, $\frac{dV}{dt} = 7h\frac{dh}{dt}$. We are given that $\frac{dV}{dt} = 2$, and so $\boxed{\frac{dh}{dt} = \frac{2}{7h}}$.

Explicit vs. Implicit Functions

Explicit	Implicit
$y = \sqrt{x}$	$x^2 + y^2 - 25 = 0$
$y = \frac{x}{x^2 + 1}$	$x^2 + 3y^2 - xy - 11 = 0$
y = f(x)	g(x,y) = 0

- Every explicit function can be written as an implicit function, but not vice versa!
- For example, implicit functions usually do not pass the vertical line test.

$$x^{2} + y^{2} - 25 = 0$$

$$\frac{d}{dx}(x^{2}) + \frac{d}{dx}(y^{2}) - \frac{d}{dx}(25) = 0$$

$$2x + 2y\frac{dy}{dx} = 0$$

$$\boxed{\frac{dy}{dx} = -\frac{x}{y}}$$

$$dy/dx = -x/y$$

Question: Calculate the slope of the tangent lines to the graph of $x^2 + y^2 - 25 = 0$ at the points (0, 5), (3, 4), and (5, 0).

Question: Shown is the graph of $x^2 + 3y^2 - xy - 11 = 0$. The blue point is the highest point on the graph. How would we calculate its coordinates?

Question: Shown is the graph of $x^2 + 3y^2 - xy - 11 = 0.$ The blue point is the highest point on the graph. How would we calculate its coordinates? Strategy: At the point shown, $\frac{dy}{dx} = 0$, so let's calculate $\frac{dy}{dx}$ and set it equal to zero.

$$x^{2} + 3y^{2} - xy - 11 = 0$$
$$2x + 6y\frac{dy}{dx} - (x\frac{dy}{dx} + y) = 0$$
$$(6y - x)\frac{dy}{dx} + (2x - y) = 0$$
$$\boxed{\frac{dy}{dx} = \frac{y - 2x}{6y - x}}$$

 $\frac{dy}{dx} = \frac{y-2x}{6y-x} = 0 \implies y = 2x$. Plug this back into our original equation $x^2 + 3y^2 - xy - 11 = 0$:

$$x^{2} + 3(2x)^{2} - x(2x) - 11 = 0$$

 $11x^2 - 11 = 0 \implies x = 1, y = 2 \text{ or } x = -1, y = -2$

▶ The Chain Rule Applied: Related Rates

Implicit Functions and Differentiation

A conical cup with radius 3cm and height 10cm is leaking water at a rate of 1ml/sec. When the water is at height h, calculate $\frac{dh}{dt}$ in terms of h. (The volume of a cone with height h and radius r is $\frac{\pi r^2 h}{3}$.)